Point mutations in the tumor suppressor Smad4/DPC4 enhance its phosphorylation by GSK3 and reversibly inactivate TGF-β signaling

نویسندگان

  • Hadrien Demagny
  • Edward M De Robertis
چکیده

The tumor suppressor Smad4/DPC4 is an essential transcription factor in the TGF-β pathway and is frequently mutated or deleted in prostate, colorectal, and pancreatic carcinomas. We recently discovered that Smad4 activity and stability are regulated by the FGF/EGF and Wnt signaling pathways through a series of MAPK and GSK3 phosphorylation sites located in its linker region. In the present study, we report that loss-of-function associated with 2 point mutations commonly found in colorectal and pancreatic cancers results from enhanced Smad4 phosphorylation by GSK3, generating a phosphodegron that leads to subsequent β-TrCP-mediated polyubiquitination and proteasomal degradation. Using chemical GSK3 inhibitors, we show that Smad4 point mutant proteins can be stabilized and TGF-β signaling restored in cancer cells harboring such mutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-β signaling.

Smad4 is a major tumor suppressor currently thought to function constitutively in the transforming growth factor β (TGF-β)-signaling pathway. Here, we report that Smad4 activity is directly regulated by the Wnt and fibroblast growth factor (FGF) pathways through GSK3 and mitogen-activated protein kinase (MAPK) phosphorylation sites. FGF activates MAPK, which primes three sequential GSK3 phospho...

متن کامل

Smad4/DPC4: A barrier against tumor progression driven by RTK/Ras/Erk and Wnt/GSK3 signaling

The tumor suppressor Smad4/DPC4 is an essential transcription factor in the TGF-β pathway that was previously thought to function constitutively. We recently reported that Smad4 activity and stability are directly regulated by 2 major signaling pathways, RTK/MAPK and Wnt/GSK3. Here we examine the molecular, cellular, and potential therapeutic significance of these findings.

متن کامل

Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4.

Homologs of Drosophila Mad function as downstream mediators of the receptors for transforming growth factor beta (TGF-beta)-related factors. Two homologs, the receptor-associated Smad3 and the tumor suppressor Smad4/DPC4, synergize to induce ligand-independent TGF-beta activities and are essential mediators of the natural TGF-beta response. We now show that Smad3 and Smad4 associate in homomeri...

متن کامل

Suppression of Tumorigenesis and Induction of p15 by Smad4/DPC4 in Human Pancreatic Cancer Cells

Purpose: The tumor suppressor gene Smad4/DPC4, a key transcription factor in transforming growth factor (TGF) signaling cascades, is inactivated in 50% of pancreatic adenocarcinomas. We seek to determine the role of Smad4/DPC4 in the suppression of tumor cell growth and in the regulation of TGF-mediated expression of cell-cycle regulatory genes p15 and p21. Experimental Design: Smad4/DPC4 is ov...

متن کامل

Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells.

PURPOSE The tumor suppressor gene Smad4/DPC4, a key transcription factorin transforming growth factor beta (TGF-beta) signaling cascades,is inactivated in 50% of pancreatic adenocarcinomas. We seek to determine the role of Smad4/DPC4 in the suppression of tumor cell growth and in the regulation of TGF-beta-mediated expression of cell-cycle regulatory genes p15(ink4b) and p21(waf1). EXPERIMENT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016